1. The curve $y = (1 - x)(x^2 + 4x + k)$ has a stationary point when x = -3.

- i. Find the value of the constant k.
- ii. Determine whether the stationary point is a maximum or minimum point.

[2]

[7]

iii. Given that y = 9x - 9 is the equation of the tangent to the curve at the point *A*, find the coordinates of *A*.

[5]

[3]

[5]

[2]

[2]

- 2. A curve has equation $y = (x + 2)^2 (2x 3)$.
 - (i) Sketch the curve, giving the coordinates of all points of intersection with the axes.

(ii) Find an equation of the tangent to the curve at the point where x = -1. Give your answer in the form ax + by + c = 0. [9]

З.

A curve has equation $y = 3x^3 - 7x + \frac{2}{x}$.

(i) Verify that the curve has a stationary point when x = 1.

(ii) Determine the nature of this stationary point.

(iii) The tangent to the curve at this stationary point meets the y-axis at the point Q. Find the coordinates of Q.

- 4. The curve $y = 2x^3 ax^2 + 8x + 2$ passes through the point *B* where x = 4.
 - i. Given that *B* is a stationary point of the curve, find the value of the constant *a*.

[5]

ii. Determine whether the stationary point *B* is a maximum point or a minimum point.

[2]

iii. Find the *x*-coordinate of the other stationary point of the curve.

[3]

5.

Tangents, Normals, Stationary Points, and Increasing and Decreasing Functions

[8]

[5]

[2]

[8]

The curve $y = 4x^2 + \frac{a}{x} + 5$ has a stationary point. Find the value of the positive constant *a* given that the y-coordinate of the stationary point is 32.

- 6. The curve $y = 2x^3 + 3x^2 kx + 4$ has a stationary point where x = 2.
 - (a) Determine the value of the constant k.
 - (b) Determine whether this stationary point is a maximum or a minimum point. [2]
- 7. A curve has equation $y = kx^{\frac{3}{2}}$ where *k* is a constant. The point *P* on the curve has *x*-coordinate 4. The normal to the curve at *P* is parallel to the line 2x + 3y = 0 and meets the *x*-axis at the point *Q*. The line *PQ* is the radius of a circle centre *P*. Show that $k = \frac{1}{2}$. Find the equation of the circle. [10]
- 8. A curve has equation $y = x^5 5x^4$.

(a)
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. [3]

- (b) Verify that the curve has a stationary point when x = 4. [2]
- (c) Determine the nature of this stationary point.

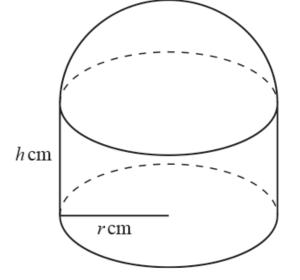
^{9.} In this question you must show detailed reasoning.

A curve has equation y = f(x), where f(x) is a quadratic polynomial in x. The curve passes through (0, 3) and (4, -13). At the point where x = 3 the gradient of the curve is -2. Find f(x).

10. A curve has equation $y = \frac{1}{4}x^4 - x^3 - 2x^2$.

		Tangents, Normals, Stationary Points, and Increasing and Decreasing Functions	
	(a)	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[1]
	(b)	Hence sketch the gradient function for the curve.	[4]
	(c)	By considering the <i>x</i> -intercepts of the graph drawn in part (b), determine the coordinates of the maximum point on the curve with equation $y = \frac{1}{4}x^4 - x^3 - 2x^2$.	[2]
11.	(i)	Find the x values of the stationary points of the curve $y = 2x^4 - x^2$.	[3]
	(ii)	Determine, in each case, whether the stationary point is a maximum point or a minimum point.	[2]
	(iii)	Hence state the set of values of x for which curve $2x^4 - x^2$ is a decreasing function.	[2]
12.	Аc	curve has equation $y = 2x^2 + x - 10$.	
	(i)	Determine the set of values of <i>x</i> for which the graph of the curve lies above the <i>x</i> -axis.	[4]

(ii) The line 3x + y = c is a tangent to the curve. Find the value of c. [5]



The diagram shows a container which consists of a cylinder with a solid base and a hemispherical top. The radius of the cylinder is r cm and the height is h cm. The container is to be made of thin plastic. The volume of the container is $45 n \text{ cm}^3$.

Show that the surface area of the container, $A \text{ cm}^2$, is given by

(a)

$$A = \frac{5}{3}\pi r^{2} + \frac{90\pi}{r}$$
[The volume of a sphere is $V = \frac{4}{3}\pi r^{3}$ and the surface area of a sphere is $S = 4\pi r^{2}$.] [4]

- (b) Use calculus to find the minimum surface area of the container, justifying that it is a [4] minimum.
- (c) Suggest a reason why the manufacturer would wish to minimise the surface area. [1]
- 14. A curve has equation $y = ax^4 + bx^3 2x + 3$.
 - (a) Given that the curve has a stationary point where x = 2, show that 16a + 6b = 1. [3]
 - (b) Given also that this stationary point is a point of inflection, determine the values of *a* [3] and *b*.

END OF QUESTION paper

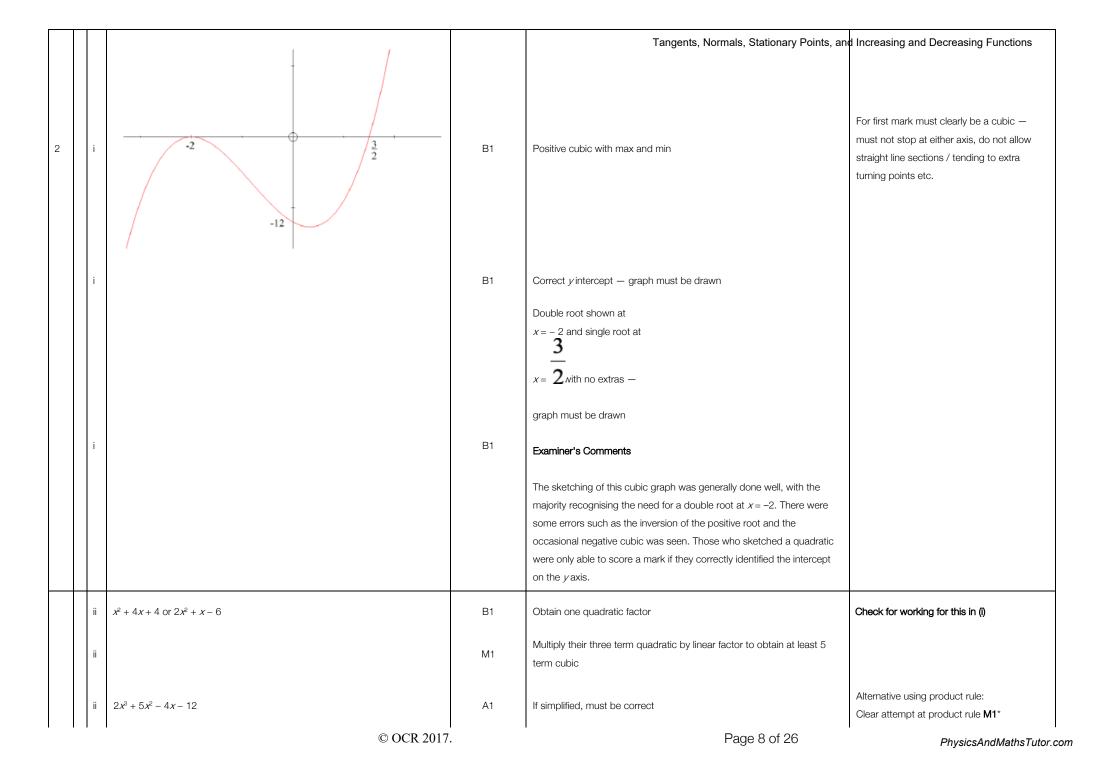
Mark scheme

Question		Answer/Indicative content	Marks	Part marks and guidance	
1	i	$y = -x^3 - 3x^2 + 4x - kx + k$	M1	Attempt to multiply out brackets	Must have $\pm x^3$ and 5 or 6 terms
	i		A1	Can be unsimplified	
	i	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3x^2 - 6x + 4 - k$	M1	Attempt to differentiate their expansion	If using product rule:
	i		A1	(MO if signs have changed throughout)	Clear attempt at correct rule M1*
	i	When $x = -3$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1*	Sets $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	Differentiates both parts correctly A1
	i		DM1*		Expand brackets of both parts *DM1
	i			$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ Substitutes x = -3 into their $\frac{\mathrm{d}x}{\mathrm{d}x}$	
	i	-27 + 18 + 4 - k = 0			Then as main scheme
				www	
				Examiner's Comments	
	i	<i>k</i> = -5	A1	More than half of candidates secured all seven marks available for this question and many clear, compact solutions were seen. Others also scored highly producing solutions marred only by arithmetical error. The conceptual problems that arose came from difficulties in differentiating <i>k</i> or differentiating <i>k</i> to give 1; most knew to set their derivative to zero and substitute $x = -3$. Only a few candidates substituted into either the original expression or its expanded form without any attempt at differentiation.	

Tangents, Normals, Stationary Points, and Increasing and Decreasing Functions

<u> </u>			rangents, Normals, Stationary Fonts, an	d Increasing and Decreasing Functions
ii	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -6x - 6$	M1	Evaluates second derivative at $x = -3$ or other fully correct method	 Alternate valid methods include: 1) Evaluating gradient at either side of -3 2) Evaluating y at either side of -3 3) Finding other turning point and stating "negative cubic so min before max"
ï	When $x = -3$, $\frac{d^2 y}{dx^2}$ is positive so min point	A1	No incorrect working seen in this part i.e. if second derivate is evaluated, it must be 12. (Ignore errors in <i>k</i> value) Examiner's Comments Most candidates found the second derivative and considered the sign at $x = -3$; only a few equated to zero in error. As his result was independent of <i>k</i> , this was by far the easiest route to success; candidates considering signs or using other methods rarely made any progress.	
iii	$-3x^2 - 6x + 9 = 9$	M1	Sets their gradient function from (i) (or from a restart) to 9	Allow first M even if k not found but look out for correct answer from wrong working.
	3x(x+2) = 0 x = 0 or x = -2	A1	Correct <i>x</i> -values	Alternative Methods:
iii	When $x = 0$, $y = -9$ for line y = -5 for curve	M1	One of their <i>x</i> -values substituted into both curve and line / substituted into one and verified to be on the other	Note: Putting a value into $x^2 + 3x^2 - 4 = 0$ (where the line and curve meet) is equivalent
iii	When $x = -2$, $y = -27$ for line y = -27 for curve	M1	Conclusion that $x = -2$ is the correct value or Second <i>x</i> -value substituted into both curve and line / verified as above	If curve equated to line before differentiating:
111	<i>x</i> = -2, <i>y</i> = -27	A1	<i>x</i> = -2, <i>y</i> = -27 www (Check k correct)	MO AO, can get M1M1 but AO ww Maximum mark 2/5

		Examiner's Comments This proved, appropriately, the most challenging question on the paper with only about half of candidates making any progress. Even high scoring candidates rarely produced a complete solution as it was necessary to identify a point here both the gradient of the line was equal to the gradient of the curve and such that the point was on both the line and the curve. Most commonly, candidates equated their derivate to 9 and tried to solve the resulting quadratic. Often the solution $x = 0$ was ignored or omitted; others substituted their solution(s) into the line only, sometimes offering both solutions. Many tried to equate the line and curve but were unable to solve the resulting cubic equation. A few who equated using the original form of the equation noticed that $x - 1$ was a common factor and the resulting quadratic had a repeated root, thus implying tangency but this approach was rarely rigorously explained.	A thempt to solve equations of curve and tangent simultaneously and uses valid method to establish at least one root of the resulting cubic $(x^{3} + 3x^{2} - 4 = 0 \text{ oe}) \text{M1}$ All roots found A1 Either 1) States $x = -2$ is repeated root so tangent M2 (If double root found but not explicitly stated that repeated root implies tangent then M0 but B1 if $(-2, -27)$ found) Or 2) Substitutes one <i>x</i> value into their gradient function to determine if equal to gradient of the line M1 Substitutes other <i>x</i> value into their gradient function to determine if equal to gradient of the line or conclusion that -2 is the correct one M1 x = -2, y = -27 A1 www SC Trial and Improvement Finds at least one value at which the gradient of the curve is 9 B1 Verifies on both line and curve B1 2/5
Total	14		



	ii	$\frac{dy}{dx} = 6x^2 + 10x - 4$	M1*	Tangents, Normals, Stationary Points, and Attempt to differentiate (power of at least one term involving <i>x</i> reduced by one)	b Increasing and Decreasing Function Differentiates $(x + 2)^2$ correctly A1 Both expressions fully correct A2 (1 each), then as main scheme
	ii		M1dep*	Substitutes to find gradient at $x = -1$	
	ii	When $x = -1$, gradient = -8	A1ft	Correct gradient found ${f ft}$ their derivative, differentiation of their expression must be fully correct to earn this mark	
	ii	When $x = -1$, $y = -5$	B1	Correct y value	y must have been found, do not allow use of gradient of normal instead of tangent
	ii	y + 5 = -8(x + 1) 8x + y + 13 = 0	M1	Correct equation of straight line through $(-1, \text{ their } y)$, their gradient from differentiation	
	11	8x + y + 13 = 0	A1	Correct answer in correct form Examiner's Comments Just over half of candidates scored full marks for this final unstructured question, with many others scoring highly. Indeed, most candidates structured their solutions very well and the vast majority of errors were arithmetical rather than conceptual. These included errors in the initial expansion and in the substitution of $x = -1$ into the derivative. A few candidates set their derivative to zero. Another fairly common error was to find the equation of the normal rather than that of the tangent as required.	i.e. $k(8x + y + 13) = 0$. Must have "=0". Note If $x = 1$ used instead of $x = -1$, then max possible from last 5 marks is M1 M1 only
		Total	12		
3	i	$\frac{dy}{dx} = 9x^2 - 7 - 2x^2$	M1*	Attempt to differentiate, any term correct	
	i		A1	Two correct terms	
	i		A1	Fully correct	Alternative for the last two marks:

i	When $x = 1$, $\frac{dy}{dx} = 9 - 7 - 2 = 0$	M1dep	Tangents, Normals, Stationary Points, and Substitute $x = 1$ into their derivative	Increasing and Decreasing Functions Sets derivative to zero and makes valid attempt to solve resulting quartic M1dep
i	Therefore a stationary point	A1	Correctly obtain zero www and state conclusion AG Examiner's Comments Most candidates approached this very sensibly, differentiating and substituting in $x = 1$ to show the gradient is zero. Many, however, then failed to link this to question and state that this was why there was a stationary point. Some candidates equated their derivative to zero and solved the resulting quartic to show was a solution, again some omitted to explain the significance of this. In all cases, differentiation was generally accurate with some errors with the negative term.	Correctly establishes $x = 1$ as solution and draws clear conclusion A1www
ii	$\frac{d^2 y}{dx^2} = 18x + 4x^3$ When $x = 1$, $\frac{d^2 y}{dx^2} > 0$ so minimum	M1	Correct method to find nature of stationary point e.g. substituting $x = 1$ into second derivative (at least one term correct from their first derivative in (i))	Alternate valid methods include: 1) Evaluating gradient at either side of 1 (<i>x</i> > 0) 2) Evaluating <i>y</i> at 1 and either side of 1 (<i>x</i> > 0)
ii		A1	No incorrect working seen in this part i.e. if second derivate is evaluated, it must be 22. Examiner's Comments Most candidates used the second derivative to determine that this was a minimum point, although there were a number of arithmetical errors at this stage. A few candidates found the second derivative to be 22 and then said "increasing", showing apparent confusion over the purpose and meaning of this method. Some candidates tried to find the gradient at either side of $x = 1$ but many of these chose $x = 0$ as the point to the left; as the function was undefined at this point, this invalidated this approach.	If using alternatives, working must be fully correct to obtain the A mark
iii	When $x = 1$, $y = -2$	B1	Finding $y = -2$ at $x = 1$	

	iii	(0, -2)	B1	Tangents, Normals, Stationary Points, and Correct coordinate www Examiner's Comments Less than half of candidates were successful on this part. Many realised the need to find the value of the function when $x = 1$ but then struggled to relate this to where the tangent would cut the axis. $Q = -2$ was a common incorrect answer.	d Increasing and Decreasing Functions
		Total	9		
4	i	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 2ax + 8$	M1	Attempt to differentiate, at least two non-zero terms correct	
	i		A1	Fully correct	
	i	When $x = 4$, $\frac{dy}{dx} = 104 - 8a$	M1	Substitutes $x = 4$ into their $\frac{dy}{dx}$	These Ms may be awarded in either order
	i	$\frac{\mathrm{d}x}{\mathrm{d}x} = 0 \text{ gives } a = 13$	M1	Sets their $\frac{dy}{dx}$ to 0. Must be seen	
				Examiner's Comments	
	i		A1	Differentiating and setting to zero and substituting $x = 4$ was the obvious strategy and, although the arithmetic proved troublesome for some, many candidates were able to secure full marks for this part.	
	ii	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 12x - 26$	M1	Correct method to find nature of stationary point e.g. substituting $x = 4$ into second derivative (at least one term correct from their first derivative in (i)) and consider the sign	Alternate valid methods include: 1) Evaluating gradient at either side of $4(x > \frac{1}{3})$ e.g. at 3, -16 at 5, 28

			Tangents, Normals, Stationary Points, and Increasing and Decreasing Functions 2) Evaluating $y = -46$ at 4 and either side of		
				$4(x > \frac{1}{3})_{\text{e.g. (3, -37), (5, -33)}}$	
			www		
ii	When $x = 4$, $\frac{d^2 y}{dx^2} > 0$ so minimum	A1	Examiner's Comments Considering the sign of the second derivative was by far the most common approach for this part and was generally successful. Some candidates equated their second derivative to zero, a confusion that has been common for many sessions.	If using alternatives, working must be fully correct to obtain the A mark	
iii	$6x^2 - 26x + 8 = 0$	M1	Sets their derivative to zero		
iii	(3x-1)(x-4) = 0	M1	Correct method to solve quadratic (appx 1)	Could be $(6x - 2)(x - 4) = 0$	
iii	$x = \frac{1}{3}$	A1	oe Examiner's Comments A small minority omitted this question, but most candidates were comfortable in returning to their expression in (i), equating to zero and finding the other root. An alternative method not seen before by several markers was to equate the second derivative to the negative of the value found in (ii); this is perfectly valid for cubics and was usually successful.	or $(3x - 1)(2x - 8) = 0$	
	Total	10			
	$y = 4x^2 + ax^{-1} + 5$	B1	ax ⁻¹ soi		
	$\frac{dy}{dx} = 8x - ax^{-2}$	M1	Attempt to differentiate – at least one non-zero term correct		
		A1	Fully correct		
	At stationary point, $8x - ax^2 = 0$	M1	Sets their derivative to 0		
	© OCR 2017		Page 12 of 26	PhysicsAndMathsTutor.	

$a = 8x^a$ oe	A1	Tangents, Normals, Stationary Points, and Obtains expression for <i>a</i> in terms of <i>x</i> , or <i>x</i> in terms of <i>a</i> www	Increasing and Decreasing Functions $x = \frac{\sqrt{a}}{2}$ oe, $a = 18x$ oe also fine
When $a = 8x^{a}$, $y = 32$ $32 = 4x^{2} + 8x^{2} + 5$	M1	Substitutes their expression and 32 into equation of the curve to form single variable equation	
$x = \frac{3}{2} 0 \mathbf{e}$	A1	$x = \sqrt{\frac{27}{12}}$ Obtains correct value for <i>x</i> . Allow	or expression for <i>a</i> e.g. $a^{rac{2}{3}}=9$
		Ignore – $\frac{3}{2}$ jiven as well.	
<i>a</i> = 27	A1	Obtains correct value for a . Ignore –27 given as well.	
OR			
$y = 4x^2 + ax^{-1} + 5$	B1	ax ⁻¹ soi	
$\frac{dy}{dx} = 8x - ax^{-2}$	M1	Attempt to differentiate – at least one non-zero term correct	
	A1	Fully correct	
$32 = 4x^2 + ax^{-1} + 5$	M1	Substitutes 32 into equation of the curve to find expression for a	
$a = 27x - 4x^3$	A1	Obtains expression for <i>a</i> in terms of <i>x</i> www	
At stationary point, $8x - ax^2 = 0$ $8x - (27x - 4x^3)x^2 = 0$	M1	Sets derivate to zero and forms single variable equation	
$x = \frac{3}{2} 0 \mathbf{e}$	A1	$x = \sqrt{\frac{27}{12}}$ Obtains correct value for <i>x</i> . Allow	
<i>a</i> = 27	A1	Ignore – $\frac{3}{2}$ given as well.	
		Obtains correct value for <i>a</i> . Ignore –27 given as well.	

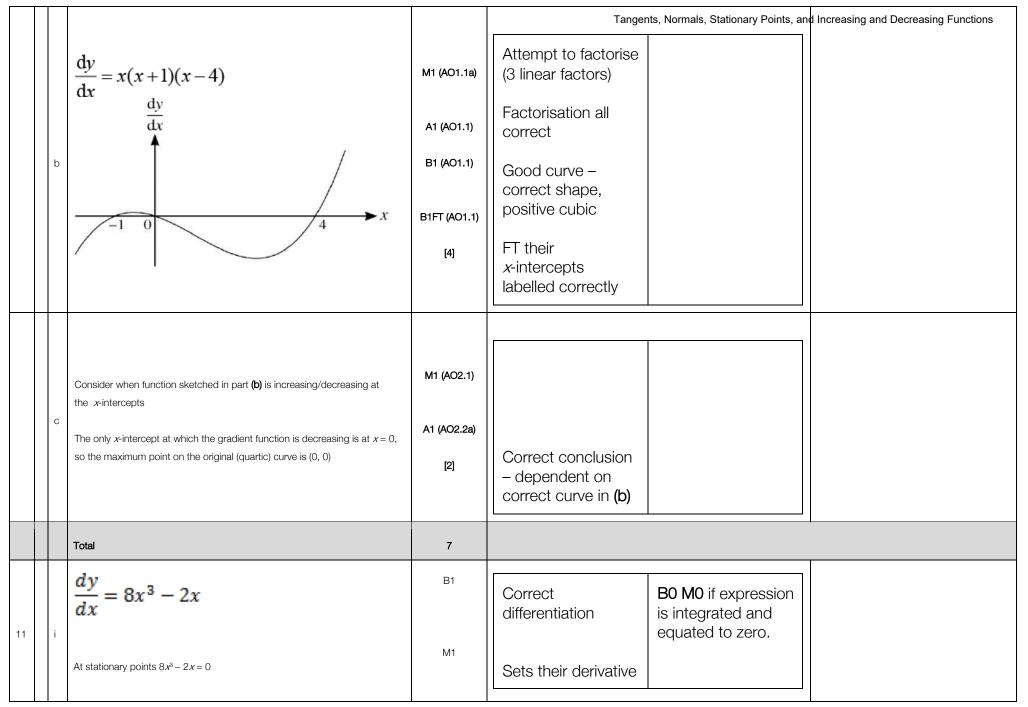
				Tangents, Normals, Stationary Points, and	Increasing and Decreasing Functions Examiner's Comments
					Many candidates obtained at least the first four marks for this demanding final question, by correctly differentiating and setting equal to zero; the most common errors at this stage were to equate to 32 or to leave the constant term 5 in the derivative. Thereafter, a significant proportion candidates went on to secure at least 7 of the 8 marks by finding an expression for a and correctly substituting this and 32 into the equation of the curve, or other equivalent methods. Some did not spot this way forward and others lost marks due to incorrect simplification of algebra or arithmetical slips. Many did not spot the factor of 3 in $x^2 = \frac{27}{12}$ and so were then unable to finish the question. Occasionally candidates appear to consider a to be a variable passing through the point (<i>x</i> , 32); often these attempts were unclear and involved the (often unrealised) creation of functions of the form <i>xy</i> and the subsequent
					attempts at implicit differentiation were incorrect.
		Total	8		
6	a	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 6x - k$	M1 (AO3.1a) A1 (AO1.1)	Attempt differentiation	
0	a		E1 (AO2.1)		

	At $x = 2$ there is a stationary point, so $\frac{dy}{dx} = 0$ $6 \times 2^2 + 6 \times 2 - k = 0$ k = 36	M1 (AO1.1a) A1FT (AO1.1) [5]	Tangents, No Explain the substitution step Substitute $x = 2$ in their $\frac{dy}{dx} = 0$ $\frac{dy}{dx} = 0$	rmals, Stationary Points, ar	d Increasing and Decreasing Functions
b	$\frac{d^2 y}{dx^2} = 12x + 6 \text{ and } 12 \times 2 + 6(=30)$ $\frac{d^2 y}{dx^2} > 0 \text{ hence minimum}$	M1 (AO1.1) A1FT (AO2.2a)	FT their $\frac{d}{dx} = 0$ Attempt differentiation again and substitute x = 2, FT their $\frac{dy}{dx}$ Correct conclusion FT www from their $\frac{d^2 y}{dx^2}$ at $x = 2$	OR M1 Attempt to evaluate gradient or y either side A1 Correct values and conclusion M1 For a complete sketch (all intercepts and both turning points identified)	
		[2]		A1 for	

			Tanger	nts, Normals, Stationary Points, ar CONClUSION given.	d Increasing and Decreasing Functions
	Total	7			
	2x + 3y = 0 $\Rightarrow y = -\frac{2}{3} x_{and \text{ gradient}} -\frac{2}{3}$ Hence, gradient of the tangent is $\frac{3}{2}$	M1(AO3.1a) A1FT(AO1.1)	Identify gradient of line $\left(=-\frac{2}{3}\right)_{anywhere}$ Use $m_1m_2 = -1$ anywhere $\left(=\frac{3}{2}\right)_{FT}$	Allow sign slip	
7	$\frac{dy}{dx} = \frac{3}{2}kx^{\frac{1}{2}}$ At x = 4, $\frac{3}{2}k(4)^{\frac{1}{2}} = 3k$	M1(AO1.1a) A1(AO1.1) M1(AO1.1) E1(AO1.1) M1(AO3.1a)	their gradient Attempt differentiation Obtain $\frac{3}{2}kx^{\frac{1}{2}}$ Substitute $x = 4$ and equate to the normal gradient	The power must be seen to decrease	
	Hence $3k = \frac{3}{2}$, so $k = \frac{1}{2}$ At P, $y = \frac{1}{2}(4)^{\frac{3}{2}} = 4$, so $P = (4, 4)$ so equation of normal through P is $(y - 4) = -\frac{2}{3}(x - 4)$	A1(AO1.1) M1(AO1.1) A1FT(AO1.1)	AG Identify coordinates, gradient of normal and form equation with their coordinates Substitute $y = 0$ and obtain $x = 10$	Tangent gradients may also be used i.e. $-\frac{1}{3k} = -\frac{2}{3}$ Accept <i>y</i> = 4	
	When $y = 0$, $x = 10$ so $Q = (10, 0)$	[10]	Use Pythagoras to		

		Using $P(4, 4)$ and $Q(10, 0)$ $PQ^{2} = (10 - 4)^{2} + (0 - 4)^{2}$ Circle equation is $(x - 4)^{2} + (y - 4)^{2} = 52$		obtain length <i>PQ</i> ² ^{angerits, Normals, Stationary Points, and Increasing and Decreasing Functions Accept equivalent forms FT their coordinates for <i>P</i> and <i>Q</i>}
		Total	10	
8	а	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x^4 - 20x^3 \text{ oe}$ $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 20x^3 - 60x^2 \text{ oe}$	M1(AO1.1a) A1(AO1.1) A1FT(AO1.1) [3]	For attempt at differentiationBoth indices decrease $\frac{dy}{dx}$ FT their $\frac{dx}{dx}$
	b	$\frac{dy}{dx} = 5x^4 - 20x^3 = 5 \times 4^4 - 20 \times 4^3$ When x = 4, $\frac{dx}{dx}$ = 0 hence there is a stationary point	M1(AO1.1) A1(AO2.1) [2]	Substitute into their $\frac{\mathrm{d}y}{\mathrm{d}x}$
	с	When $x = 4$, $\frac{d^2 y}{dx^2} = 20x^3 - 60x^2 = 20 \times 4^3 - 60 \times 4^2$ > 0 hence the stationary point is a minimum	M1(AO1.1) E1FT(AO2.2a) [2]	FT from their $\frac{d^2 y}{dx^2}$ in part (a)
		Total	7	

		DR		Tangents, Normals, Stationary Points, and Increasing and Decreasing Functions
		$f(x) = ax^2 + bx + c$		
		<i>c</i> = 3		
		$a \times 4^2 + b \times 4 + 3 = -13$	B1(AO1.1)	
		16a + 4b = -16	M1(AO3.1a) A1(AO1.1a)	Attempt sub (4,
9		f'(x) = 2ax + b	M1(AO1.1a) A1(AO1.1)	-13) in f(<i>x</i>) oe, correct equn
		6a + b = -2	M1(AO2.2a)	Attempt diff f(x)
		eg 8 <i>a</i> = 8 or 16 <i>a</i> + 4(-2 - 6 <i>a</i>) = -16	A1(AO1.1)	Correct equn
		a = 1 or b = -8	A1(AO3.2a) [8]	Solve & obtain a correct equn in <i>a</i> or
		$f(x) = x^2 - 8x + 3$		<i>b</i>
		Total	8	
		dv. a a	B1 (AO1.1)	
10	а	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3 - 3x^2 - 4x$	[1]	Correct differentiation



$x = \frac{1}{2}, x = -\frac{1}{2}, x = 0$	A1 [3]	Tangerits, Normals, Stationary Points, and Increasing and Decreasing Functionsto zeroDo not acceptCorrectly obtains all $\pm \sqrt{\frac{1}{4}}$.
		Examiner's Comments Almost all candidates secured the first two marks in this part, but a significant proportion then failed to obtain all three roots of the cubic, $-\frac{1}{2}$ either neglecting zero or
$\frac{d^2y}{dx^2} = 24x^2 - 2$	M1	Uses correct method to find nature of at leastAlternate valid methods include:one stationary point e.g. substitution into second derivative (at least one term correct from their first consider sign.1) Determining sign of gradient at either side of stationary point
$x = \pm \frac{1}{2}, \frac{d^2y}{dx^2} > 0$	A1	conclusions for all three points www
maximum when $x = 0$	[2]	Examiner's Comments
		Most candidates successfully used the second derivative to find the nature of their roots from part (i), gaining the method mark, but the

				Tangents, Norma accuracy mark was withheld if they did not cor three roots. Alternative successful methods inc of the quartic.	als, Stationary Points, and Increasing and Decreasing Functions mplete the process for all cluded drawing a sketch
		$x < -\frac{1}{2}, 0 < x < \frac{1}{2}$	B2 [2]	Both regions instea correct	eemed unsure of how to ction was decreasing. at scored often only had . Some gave single values
		Total	7		
		(2x+5)(x-2) = 0	M1 A1	Correct method to find roots. See appendix 1. Roots correct	
12	i	$-\frac{5}{2},2$ $x < -\frac{5}{2}, x > 2$	M1 A1	Chooses the "outside region" for their roots Allow	NB e.g. $-\frac{5}{2} > x > 2$ scores M1A0
			[4]	$x < -\frac{1}{2}, x > 2^{n},$	if correct

		" $x < -\frac{5}{2}$ or $x > 2$ " but do not allow " $x < -\frac{5}{2}$ and $x > 2$ " Examiner's Comments Most candidates used factorisation to star quadratic inequality and chose the correct four marks. The notation used to describe correct, although trying to describe two re- remains a fairly common error. Likewise, in joining the two sections with the word "and	answer not previously seen. Must be strict inequalities for A mark t their solution to this "outside" region securing all the region was usually gions in a single inequality noorrect language such as d" still loses the accuracy	d Increasing and Decreasing Functions
Gradient of line = - 3	B1	mark. Sign errors in initial factorisation wer	e not uncommon.	
$\frac{dy}{dx} = 4x + 1$	B1	Correct differentiation Lo	ok out for using nstead of –3.	
$ \begin{array}{c} 4x + 1 = -3 \\ x = -1 \\ y = -9 \end{array} $	M1 A1	Equates their derivative with their gradient of line 2/t	$x = \frac{1}{2}$ hich also leads to = -9. DB1M1A0A0 Max	
y = -9 $-9 = -3(-1) + c \Rightarrow c = -12$	A1	<i>x</i> correct <i>c</i> correct. Could also obtain from substituting $x = -1$	-	

OR $2x^{2} + x - 10 = c - 3x$ $2x^{2} + 4x - 10 - c = 0$ Tangent $\Rightarrow b^{2} - 4ac = 0$ $\Rightarrow 4^{2} - 4.2.(-10 - c) = 0$ c = -12	OR M1 A1 A1 A1 [5]	Tangents, Normals, Stationary Points, and Increasing and Decreasing Functions into $2x^2 + x - 10 =$ $c - 3x$. Equates line and curve Obtains correct quadratic = 0 Uses tangency implies $b^2 - 4ac =$ 0 Fully correct substitution c correct Examiner's Comments Close attention to detail was needed to ensure accuracy here, and many candidates produced clear full solutions. A large number of candidates differentiated the equation of the curve and equated this to the gradient of the line, although the use of 3 instead of -3 was a common error. Likewise there were sign slips in the subsequent attempts to find x, y and c. The other common approach was to equate
Total	9	common error. Likewise there were sign slips in the subsequent

		2 3 27 15		Tangerits, Normals, Stationary Points, and Increasing and Decreasing Functions Equate correct
		$\frac{2}{3}\pi r^3 + \pi r^2 h = 45\pi$	B1 (AO 3.1b)	volume to 45π
		$A = \pi r^{2} + 2 \pi r^{2} + 2\pi r^{4}$ $45 - \frac{2}{3}r^{3}$	B1 (AO 1.1) M1 (AO 1.1)	Correct expression for surface area
		$h = \frac{45 - \frac{2}{3}r^3}{r^2} = 45r^{-2} - \frac{2}{3}r$		Attempt to make <i>h</i> the subject and hence eliminate <i>h</i>
13	а	$A = 3\pi r^2 + 2\pi r (45r^{-2} - \frac{2}{3}r)$		
		$= 3\pi r^2 + 90\pi r^{-1} - \frac{4}{3}\pi r^2$		
			A1 (AO 2.1)	
		$A = \frac{5}{3}\pi r^2 + \frac{90\pi}{r} \qquad \text{AG}$	[4]	Simplify to obtain given answer
		$\frac{dA}{dr} = \frac{10}{3}\pi r - 90\pi r^{-2}$	M1 (AO 1.1a)	Attempt differentiation
			M1 (AO 3.1b)	
	b	$\frac{10}{3}\pi r - 90\pi r^{-2} = 0 \qquad \Rightarrow r = 3$	A1 (AO 3.2a)	Equate to 0 and solve for <i>r</i>
		$A = 45\pi$ cm ² or 141 cm ²	A1FT (AO 2.2a)	Correct surface area, including units

				Tangen	ts, Normals, Stationary Points, ar	d Increasing and Decreasing Functions
		$\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = \frac{10}{3}\pi + 180\pi r^{-3} > 0 \text{ hence minimum}$	[4]	FT their first derivative, provided it gives a minimum	Or using the sign- change of first derivative	
	с	E.g. Cheaper to manufacture as uses less material	E1 (AO 3.2b) [1]	Sensible reason based on surface area		
		Total	9			
14	a	$\frac{dy}{dx} = 4ax^3 + 3bx^2 - 2$ $4a(2)^3 + 3b(2)^2 = \Rightarrow 16a = 6b = 1$	M1 (AO1.1a) A1 (AO1.1) A1 (AO2.2a) [3]	Attempt to differentiate – all powers reduced by 1 Correct first derivative AG – sufficient working must be shown to establish given result		
	b	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 12ax^2 + 6bx$ $16a + 6b = 1 \text{ and } 4(a + b) = 0 \Rightarrow a = \dots \text{ and } b = \dots$	B1FT (A01.1) M1 (A02.1)	Correct second derivative following through from their first derivative Formulate two		

	$a = -\frac{1}{8}b = \frac{1}{2}$	A1 (AO2.2a) [3]	Tangents, Normals, Stationary Points, and Increasing and Decreasing Functions equations in a and b and attempt to solve for both a and b Both values correct No follow through for this mark
	Total	6	